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Abstract

Endocrine disrupting chemicals (EDCs) are a large group of environmental pollutants that can interfere with the endocrine
system function of organisms at very low levels. One compound of great concern is trenbolone, which is widely used as a
growth promoter in the cattle industry in many parts of the world. The aim of this study was to test how short-term (21-day)
exposure to an environmentally relevant concentration of 17b-trenbolone (measured concentration 6 ng/L) affects
reproductive behaviour and fin morphology in the eastern mosquitofish (Gambusia holbrooki). The mosquitofish is a
sexually dimorphic livebearer with males inseminating females using their modified anal fin, the gonopodium, as an
intromittent organ. Although the species has a coercive mating system, females are able to exert some control over the
success of male mating attempts by selectively associating with, or avoiding, certain males over others. We found that
females exposed to trenbolone approached males less and spent more time swimming away from males than non-exposed
(control) females. By contrast, we found no difference in the behaviour of exposed and non-exposed males. Furthermore,
exposure did not affect the anal fin morphology of males or females. This is the first study to demonstrate that exposure to
an androgenic EDC can impair female (but not male) behaviour. Our study illustrates how anthropogenic contaminants can
have sex-specific effects, and highlights the need to examine the behavioural responses of environmental contaminants in
both sexes.
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Introduction

Over the last few decades, concern has been mounting over a
group of environmental contaminants known as endocrine
disrupting chemicals (EDCs). EDCs are causing concern because
they disturb the endocrine function of organisms, often at very low
concentrations (nanograms per litre levels), with potentially
catastrophic effects. Infamous examples include eggshell thinning
in birds [1], developmental abnormalities in alligators [2], and
birth defects, gametogenesis and cervical cancer in humans [3,4].
However, until now, studies have focussed mostly on estrogenic
EDCs, with far less attention given to understanding the impacts of
EDC pollutants with androgenic effects [5–9].
The androgenic steroid trenbolone acetate is widely used as a

growth promoter in the beef industry in many parts of the world.
In vivo, the compound is rapidly converted to the biologically
active steroid 17b-trenbolone (hereafter referred to as trenbolone),
which is an extremely stable compound, with a half-life up to 267
days measured in animal waste [10]. Trenbolone enters the
environment through livestock urine and manure, and has been
detected at levels from ,5 ng/L to 20 ng/L in run off from cattle
feedlots [11,12] and up to 162 ng/L in fields receiving animal
waste [13]. The morphological impacts of trenbolone on aquatic

organisms, particularly fish, have been well documented, with
effects ranging from reduced fecundity [6,7] to complete sex
reversal resulting in an all-male population [8,9]. Our under-
standing of the behavioural effects of trenbolone exposure,
however, is limited, even though behaviour has the potential to
be a much more sensitive (and powerful) indicator of aquatic
pollution than morphological biomarkers [14–19].
Trenbolone is known to bind to androgen receptors with three

times the affinity of testosterone [20] and is therefore an extremely
potent androgenic steroid in the environment. Considering its
potency and the fact that androgens are known to affect the
expression of sexual and agonistic behaviours, we would expect
trenbolone to influence behaviour. So far, however, only two
studies have specifically looked at the behavioural effects of
trenbolone – and the results have been equivocal. Specifically,
while embryonic exposure (50 ug) was observed to suppress
copulatory behaviour in Japanese quail [21], trenbolone exposure
(20 ng/L) had no effect on zebrafish courtship behaviour [8].
EDC-studies, to date, have also tended to focus only on male
behaviour. In nature, however, both sexes are likely to be exposed
to the same pollutants simultaneously and the effects on one sex
could be very different in the other. As a result, it is important to
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investigate how EDCs might affect both males and females
contemporaneously.
Recent studies have found that exposure to environmentally

relevant concentrations of trenbolone can also induce morpho-
logical changes in fish. Ankley et al. [6], for example, found that
female fathead minnows Pimephales promelas, exposed to trenbolone
for 21 days developed dorsal tubercules – structures normally
present on mature males. Also, trenbolone concentrations as low
as 9.2 ng/L were found to cause irreversible masculinisation of
zebrafish after 60 days of exposure [9]. Whether trenbolone
exposure induces similar morphological changes in other species,
however, remain unknown.
The eastern mosquitofish, Gambusia holbrooki, is an excellent

model organism for studying the effects of androgenic EDCs
because of its widespread, cosmopolitan distribution in shallow
freshwater habitats in both urban and agricultural areas [22]. The
mosquitofish is a sexually dimorphic livebearer, with males
inseminating females using their gonopodium, as an intromittant
organ [23]. Male mosquitofish do not court females but, instead,
attempt forced copulations by thrusting their gonopodia towards
the female’s genital pore [24,25]. Despite the coercive mating
system, evidence suggests that female mosquitofish are choosy [26–
28] and may be able to exert some control over the success of male
mating attempts by, for example, selectively approaching certain
males over others [26]. Due to their internal mode of fertilisation,
male mosquitofish need to be in close proximity to females before
any mating attempts can be made, and both sexes clearly associate
with each other during the breeding season [29]. Thus, as with
other poeciliids [30–32], the time spent by females associating with
males can have a direct bearing on mating outcomes and is a
widely used measure of mating intentions in behavioural studies
[28,31,33] Morphologically, previous research on mosquitofish
has also found that embryonic exposure to androgenic hormones
can increase the length of the modified anal fin (i.e. gonopodium)
of males in relation to body size [34,35], and induce gonopodial
development in females [34,36–37]. However, it is unknown
whether EDCs might affect anal fin morphology once fish have
reached maturity.
Accordingly, the aim of our study was to investigate the impact

of trenbolone on male and female reproductive behaviour and fin
morphology. In particular, we were interested in effects arising
from short-term exposure to an environmentally relevant concen-
tration (6 ng/L). This is ecologically important because agricul-
tural pollutants enter the environment in pulses and previous work
suggests that exposure to EDCs need not to be permanent to have
long-lasting, detrimental effects [6–9,38].

Materials and Methods

Ethical Statement
The methods for animal housing, handling and experimental

protocols were assessed and approved by the Biological Sciences
Animal Ethics Committee at Monash University (permit number:
BSCI/2011/07). Because mosquitofish are a noxious species
under State laws, the terms of the collecting permit (Department of
Primary Industries Victoria, permit number NP191) did not allow
them to be returned to the wild and hence fish were euthanised.

Exposure Set up
Mosquitofish were collected from Brodies Lake in Victoria,

Australia. This is a relatively pristine site located adjacent to a
reservoir that supplies drinking water to parts of suburban
Melbourne. Fish were caught during the breeding season
(February) using dip nets and transported in coolers back to the

laboratory. In total, 280 fish were collected, of which 140 were
females and 140 males. Fish were separated by sex and acclimated
to laboratory conditions (12:12 h light regime) for 10 days in 54 L
tanks (20 fish per tank). After acclimation, fish were randomly
placed into separate-sex ‘exposure’ tanks (60 cm630 cm624 cm;
20 fish per tank), the set up of which followed the design of
Saaristo et al. [17] with a few modifications. Briefly, 14 tanks were
assigned to one of two treatments, namely, (1) a 17b-trenbolone
exposed treatment (TB), and (2) a freshwater control. In total, 280
fish were exposed: seven tanks were allocated to the TB treatment
(4 tanks for males and 3 tanks for females) and seven tanks were
allocated to the control treatment (4 tanks for males and 3 tanks
for females). We randomly took four fish from each of the holding
tanks and placed them into each of the exposure tanks. This was
continued until all of the fish from the holding tanks had been
assigned to an exposure tank. Thus, each exposure tank had fish
from several holding tanks. Male and female mosquitofish tanks in
the TB treatment were exposed to trenbolone at a nominal
concentration of 15 ng/L (measured concentration = 6 ng/L; see
below for details on how trenbolone levels were monitored) via a
flow-through system for 21-days. Mosquitofish tanks in the control
treatment were connected to an identical, but separate, flow
through system over the same period but, in contrast to the TB
tanks, the flow through system supplied only freshwater to the fish
during the exposure period. The water supplied to these fish tanks
was fed through a mixing tank into which either trenbolone from a
stock solution (in the case of the TB treatment) or freshwater (in
the case of the control treatment) was pumped using a peristaltic
pump (Watson Marlow 323 U/MC). From the mixing tanks, the
water was channelled into the fish tanks using silicon tubing. The
flow rate was kept constant (2.25 L/h) or all tanks using flow
meters (BES Flowmeters, MPB Series 1200) and adjustable valves.
For the trenbolone exposure, a fresh stock solution was prepared
once a week and the stock solution tank was changed every third
day to minimize the possible deterioration of TB. Water
temperature in the tanks was monitored daily and ranged from
19–23uC. Fish were fed ab litium with commercial fish flakes
(Otohime Hirame, Aquasonic) once a day during the exposure
period.

Monitoring of Trenbolone
The level of trenbolone used was achieved by firstly dissolving

17b-trenbolone (4,9,11-estratrien-17-ol-3-one; Novachem, Ger-
many) in 100% ethanol (600 ug/L, 1% of ethanol) to create a
stock solution, which was then diluted in the flow-through system
to achieve the desired concentration. The final solvent concentra-
tion was 0.00006% in the exposure tanks.
The concentration of trenbolone in the exposure and control

tanks was monitored by enzyme-linked immunosorbent assay
(ELISA). To do this, a 100 mL water sample was taken from each
exposure tank once a week. Water samples were acidified by
adding a mixture of 1% acetic acid methanol, then loaded onto a
conditioned solid phase cartridges (Strata633 u, 500 mg,/6 mL;
Phenomenex, Torrance, CA, USA). The cartridge was then eluted
with methanol (264 mL), with the eluate dried under nitrogen
stream. Samples were reconstituted with 100 uL methanol and
900 uL of deionised water.
Measurement of trenbolone was undertaken using commercial

ELISA kits in accordance with the manufacturer’s instructions
with a minor modification (Trenbolone ELISA kit; EuroProxima,
Arnhem, The Netherlands). In short, a total of thirty samples and
trenbolone calibration standards (freshly made in 10% methanol
water) were dispensed (50 uL) in duplicate into an antibody coated
96 well plate by an auto dispenser (epMotion 5070, eppendorf,
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Hamburg, Germany). Thereafter, 25 uL of HRPO conjugate and
25 uL of antibody were dispensed into the wells. After 1 hour
incubation at room temperature in the dark, the plate was washed
three times with wash buffer by a microplate washer (Atlantis,
ASYS HITECH, Eugendorf, Austria), and 100 uL of substrate
was added to all wells. The plate was then incubated for a further
30 minutes at room temperature in the dark. Finally, 100 uL of
stop solution was dispensed into all wells, and the absorbance of
the solutions in the wells measured at 450 nm by a microplate
reader (UVM40, ASYS HITECH, Eugendorf, Austria). Calcula-
tion of sample concentrations was undertaken by 4 parameter
logistics method after creating a calibration curve using a series of
standard calibration solutions (0, 0.125, 0.25, 0.5, 1.0, 5.0 ug/L)
made up in 10% methanol. In order to verify calibration accuracy,
check standards (i.e. standards from the kit run as samples) were
run in duplicate on each ELISA plate during each ELISA test.
The detection limit of trenbolone ELISA was 2.0 ng/L. The ratio
of nominal concentrations and measured values were 90%, which
indicates that the calibration curve provided good (accurate and
precise) sample concentration values provided the ELISA response
was within the upper and lower bounds of the calibration curve. A
spike recovery experiment was conducted in triplicate using a
5 ng/L 17b-trenbolone solution. The average recovery was 97%,
providing confidence that trenbolone in water samples was
efficiently extracted, and that measured values were neither under
nor over estimates of sample concentrations.

Behavioural Trials
All behavioural trials were conducted in tanks

(60 cm630 cm624 cm) containing freshwater with a 2 cm layer
of gravel on the bottom as substrate. One male and one female
from the same treatment group (i.e. either TB or control) were
randomly assigned to an experimental tank and allowed to freely
interact. We specifically paired fish from the same treatment
groups because, in the wild, both sexes would typically be exposed
to the same environmental contaminants simultaneously. Male
and female behaviours were recorded with a video camera.
Filming began when the male and female were released into the
tank. Fish were filmed for 15 minutes and the behaviour of each
sex was analyzed using JWatcher software, which calculates the
total time and frequency of each quantified behaviour during this
period. For females, we quantified whether or not the female was
interacting with the male and, if so, whether she was actively
associating with the male (i.e. swimming towards him), exhibiting
aggressive behaviour (i.e. biting and performing tale beats), or
trying to avoid the male by swimming away from him. For males,
we quantified whether or not the male was showing an interest in
the female. If so, we noted whether the male was orienting towards
the female (within 5 cm of her body), chasing her, or engaging in
gonopodial thrusts. We also noted the time the male took to
perform the first chase. Trials were replicated 19 times for the
trenbolone treatment and 18 times for the control. Each trial had a
new pair of fish. We used 12 tanks for behavioural trials and ran
12 trials per day (66TB and 66control). For each tank, we
alternated between TB and control trials to avoid tank effects.

Morphological Measurements
After each behavioural trial, fish were euthanized with an

overdose (40 mg/L) of anaesthetic clove oil [39]. Fish were then
weighted and measured from the tip of the snout to the end of the
caudal fin, and preserved in 70% ethanol for further anal fin
measurements. The male gonopodium and female anal fin were
analysed using the morphometric analysis described by Angus
et al. [34]. The anal fin was photographed using a moticam 3.0

mounted on a Motic SMZ-168 stereomicroscope. From these
images, ray 4 and ray 6 were measured to the nearest 0.001 mm
using Motic Digilab II (Motic Instruments Inc., Hong Kong). The
R4:R6 ratio is known to be influenced by EDCs in both the male
gonopodium [40,41] and the female anal fin [35], and was thus
calculated (dividing length of R4 by R6) for both sexes.

Statistical Treatment of Data
Data was checked for normality and heterogeneity of variance.

In our analyses of female and male behaviour, the data did not
conform to a normal distribution and we were unable to render
them normal with transformation. Therefore, the effect of
treatment on behavioural variables were analysed using Mann-
Whitney tests. For the morphological (length and anal fin) data,
independent-sample t-tests were used to test differences between
TB-exposed and control fish. SE= standard error of mean. All
statistical analyses were performed using SPSS (19.0).

Results

Female Behaviour
Trenbolone-exposed females spent less time associating with the

males (duration of time (ms): Mann-Whitney: U= 106.000,
p = 0.048, n = 37; number of times: U= 102.000, p= 0.035,
n = 37; Fig. 1a,b). Females, instead, spent more time swimming
away from the males (duration of time (ms): Mann-Whitney:
U= 102.000, p = 0.036, n = 37; Fig. 2a), although the frequency of
this behaviour did not differ between the treatments (Mann-
Whitney: U= 127.000, p = 0.181, n= 37; Fig. 2b). Aggressive
behaviours were not significantly affected (all p.0.05).

Male Behaviour
Trenbolone-exposed males did not differ in behaviour from

control males (Table 1). Males chased females in all of the trials
and there was no difference in the time they took to perform the
first chase between treatments (Mann-Whitney: U= 146.000,
p = 0.417, n = 37; Mean 6 SE: Control = 1.37 min 60.454;
TB= 1.67 min 60.450).

Morphological Analysis
The standard length of females and males (mean 6 SE) did not

differ between treatments (Females: two sample t-test: t =21.367,
df = 38, p= 0.180; Mean 6 SE: control = 32.65 mm 61.296,
TB= 35.65 mm 61.772; Males: t =20.264, df = 38, p = 0.793;
Mean 6 SE: control = 26.53 mm 60.498, TB= 26.28 mm
60.812). Moreover, the R4:R6 fin ray length ratio did not differ
between treatments for either male or female fish (two sample t-
test: Males: t = 0.217, df = 38, p= 0.828, Mean 6 SE:
2.2860.055; Females: t = 0.208, df = 38, p = 0.701, Mean 6 SE:
1.1560.017).

Trenbolone Measurements
The concentration of TB in the exposure tanks was 6 ng/L

(SE= 2.6, n= 21). The concentration of TB in the control tanks
was below detection limit throughout the exposure period. Details
regarding nominal and actual water concentration of trenbolone
are presented in Table S1.

Discussion

We found that female and male mosquitofish responded
differently to trenbolone. Trenbolone-exposed females ap-
proached males less and spent more time swimming away from
males. This was true even though exposed males did not differ in
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their behaviour from control males. Because short-term exposure
affected only female behaviour, this finding suggests that females
may be more sensitive to trenbolone than males. To our
knowledge, this is the first study to not only show that exposure
to an environmentally relevant concentration of androgenic EDC
can impair female reproductive behaviour, but that the behav-

ioural consequences of EDC exposure can differ between the
sexes.
When females were exposed to trenbolone, they approached

males less often. A previous study by Toft et al. [42] showed that
lifetime exposure to androgenic paper mill effluent decreased the
time mosquitofish females stayed close to the male. The authors of

Figure 1. Mean percentage (6 SE) of (A) time and (B) frequency females spent swimming towards the male during each trial. The two
treatments are: Control = fish exposed to freshwater (n = 18), and Trenbolone= fish exposed to 6 ng/L of 17b-trenbolone (n = 19); Asterisk indicates a
significant difference (p,0.05) between the TB treatment and control.
doi:10.1371/journal.pone.0062782.g001
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that study described this as social ‘attending’ behaviour, but in the
light of our findings, females might also have actively avoided the
close distance of males. Although mosquitofish breed via a
coercive mating system, females can nevertheless exert some
control over fertilisation success and skew copulations by actively
approaching and associating with certain males over others [26].
Hence, exposure to trenbolone could have implications for females
by affecting their motivation to mate. Lack of interest is supported

by the fact that exposed females actually spent more time
swimming away from males even though trenbolone males did
not harass females more. The impact of trenbolone on male
mating behaviours, however, was less clear.
Testosterone is known to mediate male aggression and courtship

behaviour [43]. Therefore, we hypothesised that trenbolone,
which is more potent than testosterone, would increase male
harassment (e.g. chasing, or engaging in gonopodial thrusts) of

Figure 2. Mean percentage (6 SE) of (A) time and (B) frequency females spent swimming away from the male during each trial. The
two treatments are: Control = fish exposed to freshwater (n = 18), and Trenbolone = fish exposed to 6 ng/L of 17b-trenbolone (n = 19); Asterisk
indicates a significant difference (p,0.05) between the TB treatment and control.
doi:10.1371/journal.pone.0062782.g002
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females. However, we did not find this to be the case. Why?
Androgens, such as testosterone, are typically converted to
estrogens in target tissues [44]. This increased concentration of
estrogenic hormones can lead to a down-regulation of androgen
production [43], which can in turn influence behaviour. However,
this scenario is unlikely to occur with trenbolone. Previous work
has shown that trenbolone is relatively non-estrogenic, because it is
not a substrate for the aromatase enzyme that converts androgens
to estrogens [20]. Therefore, exposure to trenbolone is likely to
impact behaviours that are controlled by androgens rather than
estrogens. It is unknown what impact trenbolone might have at
higher concentrations on males but in our study, 6 ng/L was not
sufficient to induce any significant behavioural changes. Clearly,
further investigation into the behavioural impacts of trenbolone is
required.
We did not observe any abnormal anal fin development

amongst trenbolone-exposed males or females. Hormonally-
dependent processes, such as anal fin development, are known
to be particularly sensitive to EDC exposure [34,36–37,40,45–46]
Recent research has revealed that trenbolone can also influence
gonopodial development in mosquitofish, with Brockmeier et al.
[47] and Sone et al. [48] observing masculinisation of the female
anal fin amongst trenbolone-exposed mosquitofish after 21 and 28
days of exposure respectively. However, in contrast to previously

published studies, there are two possible reasons why we found no
effect of trenbolone exposure on gonopodial morphology. First, we
used a particularly low exposure concentration (6 ng/L compared
to 10 mg/L used by Brockmeier et al. [47] and Sone et al. [48]).
Second, we only exposed adult fish to the hormone. The male
gonopodium, which is under androgenic control [36], forms via
elongation of the anal fin during sexual development [22].
Therefore future studies may benefit from exposing fish to
trenbolone from birth through to sexual maturity.
What are the potential population-level consequences of

trenbolone-induced changes to behaviour? Recent studies have
suggested that altered behaviours could have important population
effects [16–19,49–53]. At the beginning of the breeding season,
mosquitofish densities are typically low, and sex ratios are female-
biased [54]. Moreover, despite the persistence of males in trying to
secure matings, actual copulatory success is extremely low [55].
Thus, selective female association could play an important role in
reproductive success, particularly at low densities. As we have
shown, trenbolone-exposed females not only approached males
less than control fish, but they also actively avoided them more.
This suggests that at times of low population density, trenbolone
exposure has the potential to impact reproductive success and
overall population viability. Such a possibility warrants further
investigation.
In conclusion, we showed that exposure to an environmentally

relevant concentration of trenbolone affected female reproductive
behaviour. During the last decade, research has demonstrated that
estrogenic EDCs can weaken reproduction and reproductive
behaviour in a wide range of species [18,50–52,56–57]. Andro-
gens, such as trenbolone, however, have been neglected, even
though laboratory and field studies have demonstrated severe
morphological effects [5–7,58]. Not only does our study uncover a
previously unknown behavioural impact of exposure to androgenic
EDCs, but highlights how anthropogenic contaminants can have
sex-specific effects, thus underscoring the need to examine both
female and male responses contemporaneously.

Supporting Information

Table S1 Trenbolone concentration in the control and
exposure tanks. ELISA=enzyme-linked immuno sor-
bent assay. LOR= limit of reporting.
(DOC)
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