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Psychoactive pollutants, such as antidepressants, are increasingly detected in
the environment.Mounting evidence suggests that such pollutants can disrupt
the behaviour of non-target species. Despite this, few studies have considered
how the response of exposed organisms might be mediated by social context.
To redress this, we investigated the impacts of two environmentally realistic
concentrations of a pervasive antidepressant pollutant, fluoxetine, on foraging
behaviour in fish (Gambusia holbrooki), tested individually or in a group.
Fluoxetine did not alter behaviour of solitary fish. However, in a group setting,
fluoxetine exposure disrupted the frequency of aggressive interactions
and food consumption, with observed effects being contingent on both the
mean weight of group members and the level of within-group variation in
weight. Our results suggest that behavioural tests in social isolation may not
accurately predict the environmental risk of chemical pollutants for group-
living species and highlight the potential for social context to mediate the
effects of psychoactive pollutants in exposed wildlife.
1. Introduction
Pharmaceutical pollution is widely recognized as an emerging environmental
problem [1–3], with over 600 different pharmaceuticals having now been detected
in ecosystems globally [2]. Disturbingly, among these pharmaceutical pollutants
are large quantities of psychoactive compounds [4]. Given that these drugs are
specifically designed to alter mood and behaviour in humans, they also have
the potential to do so in exposed wildlife [4,5]. The antidepressant fluoxetine
(Prozac®) is one such compound. Fluoxetine is frequently detected in ecosystems
globally, at concentrations ranging between less than 0.1–351 ng l−1 [6]. The
primary target molecule of fluoxetine (the serotonin transport molecule) is con-
served across all vertebrate taxa [7], and, thus, fluoxetine has the potential to
affect a diverse array of ecologically important behaviours in wildlife [8,9].
Indeed, there is growing evidence that antidepressants, such as fluoxetine, can
disrupt a range of behaviours in non-target species at environmentally relevant
concentrations, such as activity [10–13], anxiety [14–16], predator avoidance
and escape [17–20], and foraging [21,22]. However, to date, few studies have
considered how impacts of psychoactive pollutants might be affected by social
context [23,24], and fewer still have directly asked whether impacts seen in
social isolation are reflective of those in a social context [25]. This is surprising
given that social interactions can play an important role in mediating individual
behaviour [26,27]. As a result, for group-living species, behavioural tests per-
formed in social isolation may not accurately predict the environmental risk
posed by chemical pollution. Hence, studies of behaviour need to be sensitive
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to social contexts if we are to fully understand the ecological
impacts of chemical exposure on social species.

Here, we tested the effects of fluoxetine exposure on
foraging behaviour in wild-caught female mosquitofish
(Gambusia holbrooki), both individually and when part of a
small group (three fish). The nominal (i.e. desired) concen-
trations for the low- and high-fluoxetine treatments were 30
and 300 ng l−1, respectively. The lower fluoxetine concen-
tration represents a level commonly detected in aquatic
ecosystems, while the high concentration represents more
heavily polluted ecosystems [6].
2. Material and methods
Female mosquitofish used in this study (n = 445) were collected
from awild population (37°5402800 S, 145°0801600 E) and transported
to Monash University, where they were acclimated to laboratory
conditions for one month. Water samples previously taken from
this site revealed no fluoxetine contamination (analysis performed
using liquid chromatography–mass spectrometry; J Fick 2016,
unpublished data). Here, we used only one sex to control for
any effects of sexual behaviour that may have confounded the
results [28,29]. Femalemosquitofishwere used as they showa stron-
ger tendency to form shoals thanmales [28,30]. After acclimation to
laboratory conditions, fish were randomly allocated to one of
three treatments for 28 days (unexposed, low-fluoxetine or high-
fluoxetine). A 28-day exposure was selected as the effects of
fluoxetine can be time dependent, taking two to four weeks to
manifest in humans [31,32]. For all three treatments, fish were
held in flow-through systems (24 h cycling), with eight tanks per
treatment (24 tanks total; housing approximately 20 fish per tank)
over the 28 days. Exposure was performed following previously
established protocols (see electronic supplementary material, S1.1;
[33–36]). During the exposure, gas chromatography coupled to
tandem mass spectrometry was used for analytical verification of
fluoxetine concentrations (described in [36]). During both the lab-
oratory acclimation and exposure period, fish were maintained in
aged carbon-filtered freshwater (pH: 6.9–7.9) under a 24 h light :
dark cycle (7.00–18.00 light), and fed ad libitum once daily with
commercial fish food (Otohime Hirame larval diet). To standardize
hunger levels, fishwere not fed for 24 h prior to the start of each trial.

After the 28-day exposure protocol, fish performed a novel
foraging trial either individually or as part of a group of three
[37]. All foraging trials, regardless of treatment, were performed
in aged carbon-filtered freshwater from the same source that sup-
plied the flow-through exposure systems (aerated and heated in
large reservoirs). Trial arenas (121.5 l; 60 × 45 × 45 cm; length ×
width × height; figure 1) were filled to a depth of 10 cm with
water (i.e. 27 l), had a sand substrate and four foraging plates
(12.3 × 8 × 2 cm), each of which contained 48 wells. Foraging
plates were positioned in each corner of the arena, 10 cm from
the edge. Before mosquitofish were introduced, chironomid
larvae (i.e. prey items), were distributed equally across each of
the foraging plates in shallow wells. Shallow wells were used to
ensure that fish were actively engaging in food discovery and fora-
ging behaviour [37]. Twelve and 36 chironomid larvaewere placed
in the arena of individual and group foraging trials, respectively.
This was done to balance the ratio of prey items to fish across
individual and group trials. To ensure that prey items were recog-
nized as a food source, chironomid larvae were introduced into
fish diets over the week prior to the behavioural experiments.
Prior to the start of each trial, fish were acclimated inside the fora-
ging arenawithin an opaque cylinder (one fish per cylinder; 7.5 cm
diameter) for 5 min. After acclimation, the cylinders were remotely
removed, and the individual or group was left to explore the fora-
ging arena for 20 min. Upon completion of each trial, the foraging
arenas were emptied and refilled with aged carbon-filtered fresh-
water. Fish behaviour was video-recorded from above and later
scored blind to experimental treatment (i.e. video identification
tags did not contain experimental treatment information) using
open-source event-logging software (BORIS v. 7.4.7; [38]). Specifi-
cally, for each fish, the time taken to first consume a prey item, and
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Figure 2. Total number of prey consumed plotted against standard deviation of group weight (g) for control (n = 34), low-fluoxetine (n = 34) and high-fluoxetine
groups (n = 35). Dashed grey lines show the median standard deviation of group weight (0.0359 g). To represent the interaction between standard deviation of
group weight, within each treatment, violin plots represent groups of small (less than 0.0359 g; left side of the dashed grey line) and large (greater than 0.0359 g;
right side of the dashed grey line) weight variability. (Online version in colour.)
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the total number of prey items consumed, was recorded. In
addition, for group trials, the total number of aggressive feeding
interactions was recorded as the number of times group members
attempted to steal food from one another. For individual trials, a
total of 113 fish completed the foraging experiment (n: control =
38, low-fluoxetine = 38 and high-fluoxetine = 37). For group
trials, a total of 103 groups of fish (i.e. groups of three) completed
the foraging experiment (n: control = 34, low-fluoxetine = 34
and high-fluoxetine = 35). The required sample size per treatment
group was estimated based on previous experiments investigating
the effects of fluoxetine on fish behaviour (Martin et al. [16,19,34];
Fursdon et al. [35]). Following behavioural trials, all fish
were measured for weight (±0.0001 g) and standard length
(±0.01 mm). These measures were used to calculate a body con-
dition index for each fish by producing a least-squares regression
of fish weight against standard length, with condition index
being the residual distance from this regression line.

Data were analysed using R v. 3.5.1 [39]. For a full descrip-
tion of statistical methods, see electronic supplementary
material, S2, as well as tables S1, S3 and S5 for details of
model parameters. Briefly, all models used for individual trials
included exposure treatment, fish weight and their interaction
term as fixed effects. Group trial models included exposure treat-
ment, the mean weight of the three group members, the standard
deviation of the group members’ weights and their interaction
terms as fixed effects. Weight was selected as a covariate because
it is a biologically meaningful predictor of both the effects of
fluoxetine exposure and behaviour [16,34]. To account for poss-
ible tank effects, exposure tank ID (i.e. exposure tank number
1–24) was included in all models as a random effect. Fish mor-
phometrics (i.e. weight, length and condition) were compared
across treatment groups using fish from both individual and
group trials. Time to event, continuous and count data were
tested using Cox proportional hazard mixed effect models
(COXME), linear mixed effect models (LME) and generalized
linear mixed models (GLMM), respectively. Cox proportional
hazard models were selected to analyse latency data because
these models are specifically designed to test the effects of a treat-
ment or set of treatments (i.e. fixed factors) on the time a
specified event takes to occur (i.e. survival analysis). Further-
more, these models deal with censored data (i.e. instances
where fish did not consume a prey item) and can simultaneously
assess the effect of several covariates on the dependent variable.
3. Results
(a) Analytical verification of fluoxetine concentrations
The mean measured concentrations for the low- and high-
fluoxetine treatments during the 28-day exposure period
were 18.19 ± 4.98 ng l−1 (n = 32) and 214.69 ± 38.89 ng l−1

(n = 32). For all control samples, fluoxetine was not detected
(i.e. under detection limit; less than 2 ng l−1, n = 16).

(b) Individual trials
For the time taken to first consume a prey item, there was no
significant interaction between exposure treatment and fish
weight, nor was there a main effect of exposure treatment or
fish weight (COXME; all p > 0.05; electronic supplementary
material, tables S1 and S2 and figure S1). Similarly, there was
no significant interaction between exposure treatment and
fish weight, nor was there a main effect of exposure treatment
or fish weight on the total number of prey items consumed
(nbGLM; all p > 0.05; electronic supplementary material,
tables S1 and S2 and figure S2).

(c) Group trials
There were no significant interactions or main effects detected
on the average time for group members to first consume a
prey item (COXME; all p > 0.05; electronic supplementary
material, table S3 and figure S3). For the total number of prey
items consumed, there was a significant interaction between
the standard deviation in groupweight and exposure treatment
(GLMM; F = 6.40, p = 0.041; figure 2). For unexposed and low-
fluoxetine-exposed fish, there was a significant positive effect
of standard deviation in group weight on the number of prey
items consumed (GLMM; unexposed: t = 2.16, p = 0.034, low:
t = 2.17, p = 0.034), although no such relationship was detected
in high-exposed fish (GLMM; t = –0.93, p = 0.353).

We found a significant interaction between group mean
weight and exposure treatment (nbGLMM; F = 3.79, p = 0.026;
electronic supplementary material, figure S4), as well as
between standard deviation in group weight and exposure
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treatment (GLMM;F = 4.39, p = 0.017; electronic supplementary
material, figure S5), on the number of aggressive interactions
performed during foraging. Specifically, for unexposed fish,
variability in group weight was positively associated with
foraging aggression (nbGLMM; z = 2.05, p = 0.040), while
mean group weight was negatively associated with aggression
(nbGLMM; z = –2.16, p = 0.031), although the latter appears to
be driven by a few groups with high aggression and low
mean weight (electronic supplementary material, figure S4).
By contrast, for both low- and high-exposed fish, there was no
significant effect of either mean group weight (nbGLMM; low:
z = 1.09, p = 0.275; high: z = –0.89, p = 0.374) or standard devi-
ation in group weight (nbGLMM; low: z = –1.34, p = 0.180;
high: z = 0.08, p = 0.940) on foraging aggression.

(d) Fish morphology
There was no significant difference between fish weight, stan-
dard length or condition index across the exposure treatment
groups (LME; all p > 0.05; electronic supplementary material,
table S3).
4. Discussion
We found that the effect of fluoxetine exposure on fish foraging
behaviour was dependent on the social context. For solitary
fish, fluoxetine at environmentally relevant concentrations
had no significant effect on foraging. This is consistent with
previous studies that have similarly employed field-relevant
concentrations (i.e. less than 540 ng l−1; [18,40]), whereas at
higher concentrations, fluoxetine has been reported to reduce
foraging [41–44]. In combination, these findings suggest that
fluoxetine exposure at field-detected levels is not sufficient to
alter the foraging behaviour of solitary individuals.

In contrast to the results for solitary fish, we found that
fluoxetine affected foraging dynamics in social trials. Firstly,
fluoxetine exposure disrupted the relationship between the
total number of prey consumed and standard deviation in
group weight. Specifically, for unexposed and low-fluoxetine-
exposed fish, standard deviation in fish weight was a positive
predictor of the number of prey items consumed (i.e. groups
with larger variation in body weight consumed more prey).
However, this relationship was not present in high-fluoxetine-
exposed fish. Importantly, this effect was not generated by
differences in the standard deviation of group weight across
treatments, as there was no significant difference in weight
variability among group members across treatments (LME:
F = 0.09, p = 0.912; electronic supplementary material, table S7
and figure S6). Secondly, fluoxetine exposure disrupted body
weight-dependent aggressive interactions during feeding.
For unexposed fish, mean group weight negatively predicted
the number of aggressive interactions during feeding, while
standard deviation in group weight positively predicted
aggressive interactions. The increase in aggression and compe-
tition associated with greater heterogeneity in weight among
group members likely led to the increased food consumption
observed, as has been shown in Brook trout (Salvelinus fontina-
lis; [45]) and group-living spiders (Stegodyphus dumicola; [46]).
However, these body weight-dependent foraging dynamics
were disrupted in fluoxetine-exposed fish. For fish in the low-
and high-fluoxetine treatments, neither mean group weight
nor standard deviation in group weight significantly predicted
the number of aggressive interactions during foraging. Fluoxe-
tine has previously been shown to affect aggressive behaviours,
including reduced conspecific chasing behaviour in Arabian
killifish (Aphanius dispar; [23]) and lowered aggression in
Siamese fighting fish (Betta splendens; [47,48]). It is possible,
therefore, that fluoxetine, through its anxiolytic effects, dis-
turbed weight-dependent aggressive interactions during
foraging, which, in turn, disrupted the relationship between
group weight variability and foraging behaviour.

Following the 28-day exposure, we did not detect an effect
of fluoxetine on fish morphology (i.e. length, weight or con-
dition). A fluoxetine-induced decrease in condition index has
previously been reported in fish [36,41,42,49] although, typi-
cally, such effects are reported at dosages higher than those
employed here [36]. Given that the effects of fluoxetine can
take two to three weeks to manifest [31,32], it is possible that,
over a longer duration, shifts in social foraging behaviour
could result in shifts in morphology.

In summary, the effects of fluoxetine reported here were
dependent on the social context in which fish were tested.
We report evidence of a group-specific effect of fluoxetine
exposure on foraging behaviour and aggressive interactions
during foraging,while no change in behaviourwas seen in soli-
tary individuals. Our results suggest that social context may
be an important, but underappreciated, factor influencing the
ecological impacts of chemical pollutants on wildlife.
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