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Colour polymorphisms are among the most striking examples of intraspecific variation. If vulnerability in
a given habitat depends on body colour, heterogeneity in the environment may drive behavioural dif-
ferences between differently coloured individuals. We tested this prediction in a colour-polymorphic fish
species, the red devil, Amphilophus labiatus. In Amphilophus cichlids, ‘dark’ and ‘gold’ morphs have
previously been linked to differences in morphology, aggressive behaviour and mate choice, but it is
unknown whether the morphs also differ in other key behaviours, or whether any such differences are
sensitive to environmental factors. By testing activity, boldness and exploration, our laboratory experi-
ment provided moderate evidence for an environmental variable, substrate type, having colour morph-
specific effects on behaviour: dark morph red devils explored their environment more extensively when
the environmental background (substrate) was dark brown than when it was light coloured, whereas
gold morph individuals did not differ in their behaviour in relation to substrate colour. These results
show that environmentally driven behavioural differences may be context dependent and have a role in
maintaining colour morph-specific behavioural strategies. Hence, the evolution of morphological traits,
such as colour morphs, cannot be fully understood without considering the behavioural phenotypes that
have coevolved with them in interaction with the environment.
© 2023 The Author(s). Published by Elsevier Ltd on behalf of The Association for the Study of Animal

Behaviour. This is an open access article under the CC BY license (http://creativecommons.org/licenses/
by/4.0/).
A central goal in evolutionary ecology is to uncover the mech-
anisms that generate and maintain variation among individuals.
Species with discrete colour polymorphisms are important model
systems for understanding mechanisms that underlie this variation
(Bond, 2007; Roulin, 2004; Svensson, 2017). Interestingly, an in-
dividual's body colour may be coupled with other key traits, such as
metabolic rate, immune function and stress response (Friesen et al.,
2017; McKinnon & Pierotti, 2010; Pryke et al., 2007). Selection on
individuals with different colours is sometimes also influenced by
potential mates (Eakley & Houde, 2004; Kokko et al., 2007), rivals
(Dijkstra et al., 2005; Lehtonen, 2014; Tyers et al., 2021) and would-
be predators (Abrams& Rowe, 1996; Bond, 2007; Reznick& Endler,
1982). Here, variation in the environment (e.g. in complexity, visi-
bility or background colour) can also be important (Kek€al€ainen
et al., 2010; Svanb€ack & Ekl€ov, 2011). For example, individuals
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with different colours may differ in howwell they are able to blend
into their surroundings, which may affect their risk of being
detected by predators (Endler, 1978; Kjernsmo & Merilaita, 2012;
Stevens & Ruxton, 2019). Here, the behaviour of an organism may
also be crucial via, for instance, background choice and other
behavioural strategies of camouflage (Kjernsmo & Merilaita, 2012;
Stevens & Ruxton, 2019). In Anolis sagrei lizards, exploratory
behaviour was found to be favoured in the absence, and avoidance
of the ground in the presence, of predators (Lapiedra et al., 2018).
Similarly, predation risk has been found to affect temperament in
fish (Archard & Braithwaite, 2011; Dingemanse et al., 2007; Harris
et al., 2010).

The strategy by which individuals strive to increase their fitness
can differ between colour morphs. For instance, in Gouldian
finches, Chloebia gouldiae, red-headed males are dominant and
aggressive, whereas the more passive strategy of black-headed
males appears to buffer them against social stress responses
(Pryke et al., 2007). Colour morphs may also differ in other
behavioural contexts, such as mate choice (Hurtado-Gonzales et al.,
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Figure 1. The experimental arena with dimensions at the substrate level (water depth:
ca. 22 cm). The top view schematic also shows the position of the focal fish at the
beginning of the replicate and green markers placed on the substrate (either light or
dark brown).
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2010) and antipredator responses (Thaker et al., 2009). Similarly,
phenotype-dependent conspicuousness in a given environment
may impact an individual's mating success (Endler, 1992; Heindl &
Winkler, 2003) or predation risk (Cook et al., 2012; Endler, 1980;
Godin &McDonough, 2003; Young et al., 2011). Such differences in
conspicuousness have the potential to influence the spatial distri-
bution of differently coloured individuals in fish (Endler, 1978,
1980; Young et al., 2011) and other animals (Cook et al., 2012;
Edelaar et al., 2019; Galeotti et al., 2003). Behavioural responses
that relate to conspicuousness may also carry significant costs
(Creel & Christianson, 2008), such as delays in reproduction
(Ruxton & Lima, 1997) and disruption of foraging or movement
patterns (Creel& Christianson, 2008), sometimes promoting spatial
segregation of colour morphs (Edelaar et al., 2008), assortative
mating (Jiang et al., 2013) or even speciation (Gray & McKinnon,
2007). Hence, environmental variation has the potential to induce
state-dependent behaviours (Niemel€a & Dingemanse, 2018),
including behavioural differences between colour morphs.

The Midas cichlid species complex (Amphilophus spp.) is an
important model system in evolutionary ecology (Elmer et al.,
2010; Kautt et al., 2020). Multiple lake habitats (such as rocky,
sandy, vegetation-covered and limnetic), differing in the type and
colour of the substrate, are available for, and used by, these
Neotropical fish (Elmer et al., 2010; McCrary et al., 2008; Recknagel
et al., 2014). Interestingly, many Amphilophus species and pop-
ulations exhibit a well-established, genetically determined ‘dark’
and ‘gold’ colour polymorphism, with the colour morphs being
linked to differences in morphology (gold morph being slightly
more robust: Kusche et al., 2015), aggression (among wild adult
fish, more aggression is directed towards the same morph in-
dividuals: Lehtonen, 2014), mate choice (assortative mating by
colour: Elmer et al., 2009; Lehtonen, 2017), ability to change colour
(dark morph individuals are better at matching their colour within
minutes to that of the background: Dickman et al., 1990; Sowersby
et al., 2015), parental care (more coordinated care when with a
partner of the same morph: Lehtonen, 2017) and social dominance
(gold morph is more dominant: Barlow & Ballin, 1976). However,
whether the colour morphs differ with regard to other key be-
haviours, such as activity, boldness or exploration, or whether any
such differences are sensitive to environmental factors, is not
known. Here, we addressed this knowledge gap using an intro-
duced population of the colour-polymorphic red devil, Amphilophus
labiatus, to investigate the boldness, activity and exploration ten-
dencies of dark and gold individuals against two different envi-
ronmental backgrounds. We expected that fish would adjust their
behaviours to minimize their conspicuousness in their current
environmental setting. In particular, we predicted that the fish
would perceive themselves less conspicuous on a dark background
(here, substrate), allowing them to be bolder and more active and
explorative than when on a light background. We also expected
that this response may differ between colour morphs, with dark
individuals predicted to be bolder and more explorative than the
gold morph, particularly on a dark background, because gold
morph individuals are expected to be more conspicuous to preda-
tors (Torres-Dowdall et al., 2014), and less capable of changing their
coloration to match that of the background (Dickman et al., 1990;
Sowersby et al., 2015).

METHODS

The red devil is native to Nicaragua but has been introduced to
many parts of the world, including the artificial Hazelwood Pond-
age in southeastern Australia, where a population of red devils
established in the past few decades (Sowersby et al., 2015, 2020).
More than half of the individuals in this population are of the gold
colour morph (Sowersby et al., 2015; Wong & Lehtonen, 2015),
whereas in the native range in Nicaragua the proportion of gold
morph individuals is typically around 10% (Elmer et al., 2010).
Similar to the natural lake environment, the Hazelwood Pondage
contains different substrate types with respect to coarseness and
colour (Sowersby et al., 2020; T.K. Lehtonen & B.B.M. Wong, per-
sonal observations). The fish used in this study were collected from
Hazelwood in October 2015 and transported to Monash University
Clayton campus, where they were maintained in multiple holding
tanks of ca. 200 litres at 24e25 �C on a diet of thawed brine shrimp
and commercial fish food pellets. The trials were run in December
2015eJanuary 2016.

To investigate colour morph- and environment-dependent
behavioural differences, we used maze arenas, which have been
widely employed for assessments of behaviour in a range of fish
species, including cichlids (e.g. Bertram et al., 2018; Brand et al.,
2021; Hope et al., 2020; Kotrschal et al., 2014; Salena et al., 2022;
Wallace et al., 2022). Each arena contained a 3 cm layer of either a
‘dark brown’ or ‘light’ sand substrate (Fig. 1), and we tested the
behaviour of dark (N ¼ 24, total length ± SE: 117 ± 3 mm) and gold
(N ¼ 35, 117 ± 2 mm) individuals (Figs, 2 and 3). In arenas of both
types, we had placed green markers ca. 4 cm apart on the substrate
(Fig. 1). At the beginning of a trial, the focal fish was placed in the
corner of the arena inside a cage with mesh walls to allow accli-
mation for 15 min. The cage was then removed, and the arena was
video recorded (with an Olympus TG-4 camera) from above for
25 min (which was close to the maximum nonstop recording time
supported by the camera). Altogether, each focal individual was
tested, in a randomized order (established by a random number
generator), in four different arenas, two of which had light sub-
strate and the other two had dark brown substrate.We changed the
positions of the arenas, and the water in them, multiple times, and
their substrate once, during the study. Overall, we had 236 trials, of
which one (a gold fish on a light substrate) was not available for
analyses (see below) due to a technical mishap with the camera.
From the recordings of the four trials per fish, we quantified mul-
tiple measures of behaviour. First, the time taken from the start of
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the trial until the fish started to move was used as a proxy for
boldness (Wilson & McLaughlin, 2007). In some of these trials, the
focal fish did not move at all. For the remainder (N ¼ 125 trials,
performed by 50 individuals, see Figs 2 and 3 for sample sizes per
treatment), we also quantified the number of markers the focal fish
passed within the first 5 min after it had started to move, i.e. the
new area it explored, as a proxy for exploration (Conrad et al., 2011)
and the total number of markers passed (i.e. distance moved)
within those 5 min as a proxy for activity (Wilson & Godin, 2009).
Finally, we assessed the extent to which boldness, exploration and
activity were correlated. After the trials, each individual was
quickly digitally photographed against 1 mm grid lines, which were
later used as a scale when assessing the individual's total length
using ImageJ 1.51k software (NIH, U.S.A., https://imagej.net/
software/imagej/).

Statistical Analyses

We used R 4.2.1 software (R Core Team, 2022) for all analyses.
We were interested in the effects of the morph and substrate on
boldness, activity and exploration, while accounting for the
possible effects of fish size and the number of times the fish had
already been tested. Accordingly, our full models (see below for
additional details) included colour morph (dark versus gold), sub-
strate background (dark brown versus light) and their interaction,
as well as the individual's total length and the trial order (from 1 to
4). To account for each fish being tested in four trials, fish ID was
used as a random effect. Using this general framework, to assess
boldness (the time it took for an individual to move), we applied a
mixed-effects Cox model (MECM; ‘coxme’ package). This type of
analysis uses information about all individuals, including those that
did not start to move within the first 20 min. For activity and
exploration, we applied a generalized linear mixed model (GLMM),
with a negative binomial distribution, as appropriate for over-
dispersed count data (Zuur et al., 2013; ‘glmer.nb’ in the ‘lme4’
package). When more information about pairwise contrasts was
needed, we used the ‘emmeans’ function/package.

Lastly, due to the widespread interest in behavioural correla-
tions, particularly in the context of behavioural syndromes (Sih
et al., 2004; Wolf & Weissing, 2012), we assessed correlations be-
tween the three behaviours by running pairwise repeated mea-
sures correlation analyses (‘rmcorr’ in R) on log-transformed values
of the behavioural scores (after which they passed the
ShapiroeWilk test of normality). Note that one potential source of
any such correlation is that the behaviours of interest were
measured using the same replicates.

Ethical Note

Before and after the experiment, the fish used in this study were
kept in holding aquaria of ca. 200 litres (with a maximum of 20
individuals in each tank). They were fed daily with thawed brine
shrimp and commercial fish food granules. The holding tanks and
experimental arenas were kept at 24e25 �C with a 12:12 h day/
night cycle. To ensure high water quality, we changed 40% of the
water in the tanks weekly.

This study complies with all relevant federal and state laws, as
well as national, institutional and ASAB/ABS guidelines for the care
and use of animals in research. Fish were collected under a scien-
tific licence from the Victorian Department of Environment and
Primary Industries (Permit number RP1241) and, after the
completion of trials, they were retained for future, unrelated
studies. Fish were handled with care. During the size measure-
ments and behavioural assessments in novel environments, fish
may have experienced temporary stress but not any physical harm.
Theworkwas approved by the Animal Ethics Committee of Monash
University, Australia (BSCI/2012/23 and BSCI/2016/10).

RESULTS

Boldness: Latency to Move

The interaction between morph and substrate did not have a sig-
nificant effect on boldness, i.e. the time it took for an individual to
move (MECM: b ± SE ¼ 0.1399 ± 0.3927, z¼ 0.36, P¼ 0.72). In addi-
tion, neither morph (MECM: b ± SE ¼ 0.2354 ± 0.4115, z¼ 0.57,
P¼ 0.57) nor substrate (MECM: b ± SE¼ 0.03792 ± 0.3036, z¼ 0.12,
P¼ 0.90) had a significant effect (Fig. 2). Individuals with a smaller
total length tended to be bolder (MECM: b ± SE¼ 0.01993 ± 0.01226,
z¼ 1.63, P¼ 0.10) and presentation order also had a significant effect
(MECM: b ± SE¼ 0.4968 ± 0.09186, z¼ 5.41, P < 0.001), with fish
being bolder during the earlier presentations.

Activity: Total Distance Moved within 5 min

The morph*substrate interaction did not have a significant effect
on activity, i.e. the number of markers the individual passed within
the first 5 min after they started to move (GLMM: b ± SE
¼ 0.2214 ± 0.2608, z¼ 0.849, P ¼ 0.40). Similarly, morph (GLMM:
b ± SE¼ 0.2564 ± 0.1989, z¼ 1.289, P¼ 0.20; Fig. 3a), substrate
(GLMM: b ± SE¼ 0.2431 ± 0.2015, z¼ 1.207, P¼ 0.23; Fig. 3a) and
total length (GLMM: b ± SE¼ 0.002797 ± 0.005394, z¼ 0.519,
P¼ 0.60) did not have a significant effect. Activity decreased over
successive trials (GLMM: b ± SE ¼ 0.3429 ± 0.05507, z¼ 6.228,
P < 0.001).

Exploration: New Area Covered within 5 min

The effect of themorph*substrate interaction on exploration, i.e.
the new area covered during the first 5 min, approached signifi-
cance (GLMM: b ± SE ¼ 0.3646 ± 0.2111, z ¼ 1.727, P ¼ 0.084), with
the fish being bolder on dark substrate (GLMM:
b ± SD ¼ 0.3436 ± 0.1626, z ¼ 2.113, P ¼ 0.035) and the morph ef-
fect being nonsignificant (GLMM: b ± SD ¼ 0.2407 ± 0.1550,
z ¼ 1.553, P ¼ 0.12). Regarding the other two effects we accounted
for, total length did not have a significant effect (GLMM:
b ± SD ¼ 0.0023 ± 0.0040, z ¼ 0.560, P ¼ 0.58), whereas presenta-
tion order did (GLMM: b ± SD ¼ 0.1539 ± 0.0461, z ¼ 3.339,
P ¼ 0.0008), with exploration scores being higher in earlier than
later trials. To better understand the tentative interaction between
morph and substrate, we assessed pairwise contrasts for the two
morphs and found that dark morph individuals explored more on
the dark brown than light substrate (‘emmeans’ contrast assess-
ment: b ± SE ¼ 0.344 ± 0.163, z ¼ 2.11, P ¼ 0.035; Fig. 3b), whereas
gold individuals did not adjust their behaviour (‘emmeans’ contrast
assessment: b ± SE ¼ 0.021 ± 0.136, z ¼ 0.135, P ¼ 0.88; Fig. 3b).

Associations Between Behaviours

An individual's activity was positively associated with the area it
explored (repeated measures correlation: r74 ¼ 0.8662, 95% confi-
dence interval, CI ¼ 0.7951e0.9139, P < 0.0001) and negatively
associated with the latency to move (i.e. more active individuals
were bolder; repeated measures correlation: r74 ¼ �0.2550, 95%
CI ¼ �0.4569 to 0.0282, P ¼ 0.026). There was no significant cor-
relation between exploration and the latency to move (repeated
measures correlation: r74 ¼ �0.1226, 95% CI ¼ �0.3414 to 0.1090,
P ¼ 0.29).

https://imagej.net/software/imagej/
https://imagej.net/software/imagej/
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Figure 2. Percentage of trials, over time, in which the focal fish had not started to move, for individuals of dark and gold morphs, tested on light and dark brown substrates. Sample
sizes are indicated both as numbers of trials and as individuals (in parentheses). The different treatments are visualized in the bottom part of the figure.
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DISCUSSION

We found that dark morph individuals swimming on a dark
brown substrate explored their environmentmore extensively than
on a light-coloured substrate, while gold morph individuals did not
adjust their exploratory tendencies to substrate colour. Boldness
(i.e. time until starting to move around) and activity (the distance
moved within 5 min after having started) were not significantly
affected by colour morph or substrate type. Hence, the results show
that, in these cichlid fish, environment-driven behavioural differ-
ences are context dependent: behaviour did not vary according to
morph or environment initially (regarding boldness to move) but
only later, after the individuals had started to gather more infor-
mation about their environment (i.e. when they had the opportu-
nity to explore their surroundings).

The long-term continued coexistence of separate (colour)
morphs in a population has fascinated ecologists and evolutionary
biologists for decades, and a range of factors have been postulated
to contribute to their persistence. We were particularly interested
in the possibility that an individual's phenotype might influence
the environmental setting inwhich it performs well or behaves in a
specific manner. Such responses may be linked to assortative
mating, niche separation or predation risk (Bond, 2007; Galeotti
et al., 2003; Gray & McKinnon, 2007), and hence have a potential
role in speciation (Forsman et al., 2008; Gray & McKinnon, 2007;
Puebla et al., 2007). Currently, we do not know to what extent the
environment-dependent differences in behaviour between the
different morphs, shown in the current study, contribute to
foraging strategies, niche separation or assortative mating in the
wild. In Amphilophus cichlids, breeding pairs are usually formed
between individuals of the same morph (Elmer et al., 2009;
Lehtonen, 2017), while morphological differences suggest that the
gold morph may occupy a more benthic ecological niche (Kusche
et al., 2015). During the breeding season, the only (and relatively
minor) morph-related spatial segregation was observed between
colour morph-assorted and nonassorted breeding pairs (Lehtonen,
2017). If the behavioural adjustment shown in our study allows the
dark morph to forage against a wider range of backgrounds more
efficiently than their gold counterparts, this benefit could help to
explain why it is more numerous than the gold morph in its native
range, despite the gold coloration having dominant genetic inher-
itance (see also Lehtonen, 2017; Sowersby et al., 2015; Torres-
Dowdall et al., 2014). Environmental variation and frequency-
dependent selection could then stabilize the frequencies at the
observed levels (Roulin, 2004).

We propose that the main reason for exploration being highest
for dark morph individuals swimming above a dark brown sub-
strate is that this morph and substrate combination provides the
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best background matching and lowest conspicuousness to visually
hunting predators (see Sowersby et al., 2015). In contrast, the
behaviour of the gold morph individuals might be less plastic or
their conspicuousness less dependent on the background. How-
ever, assessments of the visual properties of the predators are
needed to formally test these hypotheses. Avian predators that are
easily capable of predating on red devils (and other similar sized
fish) are common around both their natural and introduced lake
environments (T.K. Lehtonen& B.B.M.Wong, personal observations
2005e2016). While our study was conducted in the laboratory in
the absence of predators, each individual was netted immediately
prior to the trial's acclimatization period, which may have resulted
in them perceiving the environment as not only novel but also
risky, given that some individuals did not move for the entire
duration of the trial. The environment-driven differences imply
that, in a heterogeneous environment, a single phenotype or
strategy is unlikely to be optimal against all potential backgrounds
(Stevens & Ruxton, 2019). For instance, when motionless, Pacific
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tree frogs, Pseudacris regilla, with two colour forms (brown and
green) were more likely to be attacked by garter snakes, Thamno-
phis elegans, when their body colour was mismatched with the
shade of their background (Morey, 1990). We suggest that similar
mechanisms could explain the higher exploration scores of dark
morph individuals on a dark brown substrate. Therefore, the find-
ings indicate that variation in habitat types can maintain intra-
specific variation in behaviour.

While the environment-dependent link between colour and
behaviour might be a response to selection on differently coloured
individuals in different environments, our results do not exclude
nonadaptive morph differences or proximate mechanisms such as
pleiotropic effects or physical linkage between the ‘colour gene’
(Kratochwil et al., 2022) and genes responsible for behavioural
differences between the morphs. Indeed, colour morphs in many
animals have been found to be genetically linked to other traits
(McKinnon & Pierotti, 2010). Interestingly, in Amphilophus cichlids,
gold morph individuals gain their striking coloration by losing their
melanophores, that is, pigment cells that produce and store
melanin (Dickman et al., 1988). Melanin-based coloration has been
found to have pleiotropic effects on other phenotypic traits
(Ducrest, Keller, & Roulin, 2008). For instance, in the barn owl, Tyto
alba, the size of melanin-based spots is associated with suites of
antipredator responses, which are genetically influenced (van den
Brink, Dolivo, Falourd, Dreiss, & Roulin, 2012). In close relatives of
the red devil, different species and populations exhibit parallel
colour morph differences in ecologically relevant morphological
traits, which could result from a genetic link between an in-
dividual's colour morph and morphology (Kusche et al., 2015).
While the flexible exploration behaviour of dark morph individuals
is consistent with their better background matching ability
(Sowersby et al., 2015), it does not appear to be linked to previously
reported morph-specific patterns of social dominance (juvenile
gold morph individuals are more dominant: Barlow & Ballin, 1976)
or aggression (breeding individuals in the wild direct more
aggression towards intruders of the same colour morph as them-
selves: Lehtonen, 2014). In this respect, note that the study popu-
lation has reduced standing genetic variation compared to
populations within the species' native range (Sowersby et al.,
2020).

We also found that activity was positively associated with bold-
ness and exploration. The result supports the idea that bold fish are
likely to be quicker andmore active in approaching novel objects or
discovering food (Fraser et al., 2001). Note, however, that the
behavioural traits were measured using the same trials, which may
have induced the correlations. Even under these conditions, bold-
ness and explorationwere not significantly linked. Hence, our study
does not indicate an important role of a boldnesseexploration
syndrome in red devils, in contrast to some other species of fish
(Mazu�e et al., 2015; Wilson & Godin, 2009; Wisenden et al., 2011)
and birds (van Oers et al., 2004; Verbeek et al., 1994).

Size-dependent predation risk, metabolism and energy reserves
may facilitate behavioural differences (Blanckenhorn, 2000; Krause
et al., 1998; Skalski & Gilliam, 2002; Sogard, 1997). In the intro-
duced habitat, red devils had been exposed not to large piscivorous
fish but, instead, to cormorants and other piscivorous birds (T.K.
Lehtonen & B.B.M. Wong, personal observations). While there is no
consensus about the prey size selectivity of these birds (�Cech et al.,
2008; Ovegård et al., 2021), size-dependent fitness effects of being
bold (see Ballew et al., 2017; Brown& Braithwaite, 2004; Dowling&
Godin, 2002), such as larger fish being targeted more often by avian
predators, would be in line with the observed weak tendency of
smaller red devils to be bolder.

To conclude, we found that dark morph individuals of red devils
explored their environment more extensively on a dark brown than
light substrate. Interestingly, gold morph individuals did not simi-
larly respond to their background. These results suggest that the
type of environment (here: substrate colour) can play a role in
maintaining colour morph-specific behavioural strategies in these
fish. Our study also demonstrates that the evolution of morpho-
logical traits (such as colour morphs) cannot be fully understood
without considering both the environment with which they
interact and the behavioural phenotypes that coevolve with them.
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