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Abstract

Environmental pollution is an increasing problem for wildlife globally. Animals are confronted with many different forms of pollution, 
including chemicals, light, noise, and heat, and these can disrupt critical biological processes such as reproduction. Impacts on 
reproductive processes can dramatically reduce the number and quality of offspring produced by exposed individuals, and this can 
have further repercussions on the ecology and evolution of affected populations. Here, we illustrate how environmental pollutants 
can affect various components of reproduction in wildlife, including direct impacts on reproductive physiology and development, 
consequences for gamete quality and function, as well as effects on sexual communication, sexual selection, and parental care. We 
follow with a discussion of the broader ecological and evolutionary consequences of these effects on reproduction and suggest future 
directions that may enable us to better understand and address the effects of environmental pollution.
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Introduction

Environments around the globe are changing at an 
unprecedented pace and scale as a result of pollution 
from human activities. In this regard, wildlife are 
confronted with anthropogenic pollution in a wide 
variety of forms. This includes chemical contaminants 
that enter the environment from the manufacture, usage, 
and disposal of myriad products, such as pesticides, 
pharmaceuticals, and heavy metals (Dixit et  al. 2015, 
Bernhardt et al. 2017). Other pollution sources include 
widespread anthropogenic light sources that illuminate 
the night (Longcore & Rich 2004), noise that is 
propagated throughout environmental landscapes from 
traffic, machinery, and industrial activities (Barber et al. 
2011), and heat pollution, both local and global, that 
alters thermal niches within ecosystems (Hansen et al. 
2006, Yow 2007). These diverse forms of pollution can 
all have detrimental effects on wildlife and the ecological 
communities they inhabit.

A particularly concerning consequence of 
environmental pollution is the disruption of reproductive 
processes. Pollutants can interfere with a broad range 
of traits necessary for reproductive success, such 
as reproductive physiology, gamete function, and 
organismal behaviour (Table 1). Alteration of these 
processes can reduce mating success, either directly 

by decreasing fertilisations or indirectly by disrupting 
mate attraction and/or encounter rates. These effects 
can dramatically alter the number and quality of 
offspring that individuals can contribute to successive 
generations, a concept commonly referred to as the 
‘fitness’ of an individual (Orr 2009). These changes 
in fitness can then have harmful repercussions at the 
population and community levels, as well as influence 
the evolutionary trajectories of affected populations. 
Despite being essential for understanding how species 
will be affected by human-induced environmental 
change, the ecological and evolutionary repercussions 
of pollutants are rarely considered (but see Saaristo et al. 
2018). Additionally, most studies focus on the direct 
effects of a single pollutant on a single species, limiting 
our understanding of how biotic and abiotic interactions 
influence the broader impacts of pollution.

In this review, we illustrate the ways in which 
reproduction can be impacted by environmental 
pollution and discuss the ecological and evolutionary 
consequences of these effects. We begin by outlining the 
direct impacts of environmental pollution on reproductive 
physiology and development, such as pollution-
induced changes in sex hormones/pheromones, sex 
differentiation, and reproductive timing. We then 
consider how pollution can affect gamete production 
and function, including sperm motility and egg viability, 
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before going on to examine impacts of pollution on 
reproductive processes such as sexual communication 
and mate choice. This is followed by a discussion of 
the ecological and evolutionary repercussions of these 
effects on reproduction. We conclude by highlighting 
future directions and steps necessary to understand and 
address the realised effects of environmental pollution 
on reproduction.

Direct effects of pollution on reproductive 
physiology and development

Environmental pollution can fundamentally affect 
reproduction by altering the production or signalling 
efficacy of sex hormones. A variety of chemical pollutants, 
for instance, can interact with steroid hormone receptors 
directly or indirectly, altering levels of blood sex steroids 

Table 1  Summary table of examples featured in this review to illustrate the different effects environmental pollution can have on reproductive 
function across diverse taxa.

Effect Pollutant Source of pollutant Animal Paper

Feminisation of males Ethinyloestradiol Contraceptive pill Fish (Rutilus rutilus, Pimephales 
promelas) 

Jobling et al. (1998), Kidd et al. 
(2007), Lange et al. (2009)

Atrazine Herbicide Amphibians (Xenopus laevis, 
Rana pipiens)

Hayes et al. (2002a,b, 2003, 
2006, 2010)

Mice (Mus musculus) Cook et al. (2019), Govers 
et al. (2019)

Masculinisation of 
females

Tributyltin (TBT) Anti-fouling paint Gastropods (various species) Ten Hallers-Tjabbes et al. 
(1994), Matthiessen and 
Gibbs (1998)

Disruption of gonad 
development

Neonicotinoids Insecticide Bumblebees (Bombus terrestris, 
B. lucorum, B. pratorum,  
B. pascuorum)

Baron et al. (2017)

Heat Global warming, heat islands, 
factory discharge, and so on

Fish (Rutilus rutilus) Luksiene and Sandström 
(1994)

Biased sex ratios Heat Global warming, heat islands, 
factory discharge, and so on

Sea turtles (various species) Fuentes et al. (2009)

Clotrimazole Antifungal Zebrafish (Danio rerio) Brown et al. (2015)
Dieldrin Insecticide Daphnia galeata Dodson et al. (1999a)
Atrazine Herbicide Daphnia pulicaria Dodson et al. (1999b)

Altered reproductive 
timing

Light Artificial lighting from 
streetlights, building exteriors, 
advertising, and so on

Blackbirds (Turdus merula) Dominoni et al. (2013a,b)
Tammar wallabies  

(Macropus eugenii)
Robert et al. (2015)

Heat Global warming, heat islands, 
factory discharge, and so on

Birds (Parus major) Visser et al. (2009)

Reduced sperm 
motility

Bisphenol A (BPA) Plastic production Brown trout (Salmo trutta) Lahnsteiner et al. (2005)
Air particulates Smoke, fumes, and so on Humans Deng et al. (2016), Jurewicz 

et al. (2018)
Radiation Nuclear accidents Birds (Hirundo rustica) Møller et al. (2005, 2008, 

2014)
Decreased 

fertilisation success 
of eggs

Titanium dioxide Personal care products Bivalves (Tegillarca granosa) Han et al. (2019)
Heavy metals Mining, products such as 

fertilisers, batteries, and so on
Fish (various species) Jezierska et al. (2009)

Inhibited pheromone 
production

Diclofop-methyl Herbicide Cotton bollworm moth 
(Helicoverpa armigera)

Eliyahu et al. (2003)

Light Artificial lighting from 
streetlights, building exteriors, 
advertising, and so on

Cabbage moths  
(Mamestra brassicae)

van Geffen et al. (2015)

Endosulfan Insecticide Red-spotted newts 
(Notophthalmus viridescens)

Park et al. (2001)

Masked mating 
signals

Noise Traffic, industrial activities, and 
so on

Fish, amphibians, birds and 
mammals (various species)

Shannon et al. (2016)

Light Artificial lighting from 
streetlights, building exteriors, 
advertising, and so on

Glow-worms  
(Lampyris noctiluca)

Bird and Parker (2014)

Disrupted mate 
choice

Trenbolone Agricultural growth-promotant Guppies (Poecilia reticulata) Tomkins et al. (2018)
Ethinyloestradiol Contraceptive pill European Starlings  

(Sturnus vulgaris)
Markman et al. (2008)

Reduced parental 
care

Noise, light Traffic, industrial activities, 
artificial lighting from 
streetlights, building exteriors, 
advertising, and so on

Seabirds (Calonectris diomedea) Cianchetti-Benedetti  
et al. (2018)
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and disrupting sexual development. Such chemicals are 
collectively referred to as endocrine-disrupting chemicals 
(EDCs). For example, ethinyloestradiol, an oestrogen 
commonly used in contraceptive pills, can enter the 
environment via urine (Johnson & Williams 2004) and 
has been shown to induce physiological feminisation in 
wild fish through its interaction with oestrogen receptors 
(Jobling  et  al. 1998, Lange et  al. 2009). Various other 
chemical pollutants that mimic endogenous steroids are 
also known to interact directly with oestrogen receptors 
(e.g. bisphenol A: Gould  et  al. 1998; phthalates: 
Jobling  et  al. 1995) and androgen receptors (e.g. the 
livestock growth promoter trenbolone: Sone et al. 2005; 
various prostate chemotherapeutic agents: Mateo et al. 
2014), with downstream consequences for reproductive 
physiology. Pollutants can also change sex hormone 
levels via stress-related mechanisms or through effects on 
other hormonal pathways (Brüning et al. 2016). Indeed, 
there is evidence that light pollution can act as a chronic 
stressor, inhibiting the production of sex hormones in 
birds via the hypothalamic–pituitary–adrenal axis (Russ 
et al. 2015).

Such changes in sex hormone levels can have 
repercussions for the development of reproductive 
anatomy and morphology in organisms. For example, in 
Lake Apopka, Florida, exposure of American alligators 
(Alligator mississippiensis) to a mixture of chemicals 
– including a spill of dicofol and DDT, agricultural 
runoff such as pesticides, and sewage treatment outflow 
– resulted in females exhibiting abnormal ovarian 
morphology and unusually prominent polyovular 
follicles, while males developed poorly organised testes 
and small phalli (Guillette et  al. 1994, 1995, 1996). 
Further, developmental exposure of amphibians to 
the widespread herbicide atrazine has been shown to 
induce reproductive malformations due to feminisation 
of males. This includes the anomalous development of 
multiple gonads (Hayes et al. 2002a), altered testicular 
anatomy (Tavera-Mendoza et  al. 2002, Hayes et  al. 
2003), development of ovotestes and testicular oocytes 
(Hayes et  al. 2006, 2010, Murphy et  al. 2006) and 
hermaphroditism (Hayes et  al. 2002a,b). Atrazine can 
also lead to feminisation in mice, resulting in penis 
abnormalities (Govers et  al. 2019) and altered sperm 
production (Cook et  al. 2019). The direct impacts 
of chemical pollution on reproductive anatomy and 
morphology have been reported across a diverse array 
of taxa (e.g. feminisation of fish populations exposed 
to oestrogenic chemicals: Jobling et  al. 1998, 2006; 
masculinisation of gastropods exposed to anti-fouling 
paint: Ten Hallers-Tjabbes et  al. 1994, Matthiessen 
& Gibbs 1998; reduced ovary development in 
neonicotinoid-exposed wild bumblebee queens: Baron 
et al. 2017), providing evidence that chemical pollution 
could be a major driver in the reported increases in 
abnormalities seen in sexual development in humans 

(discussed in Giwercman et al. 1993, Skakkebæk et al. 
2001, Damgaard et al. 2002).

Direct effects of pollution on wildlife reproductive 
anatomy and morphology are not limited to impacts 
of chemical pollution. Indeed, thermal pollution 
from nuclear power plants has been associated with 
altered gonad growth and asynchronic gonad and 
oocyte development in fish populations (Luksiene & 
Sandström 1994). Further, thermal pollution exposure 
has been shown to result in a greater variation in gonad 
development, both within and among fish populations 
(Efimova 1977, Virbickas et  al. 1981, Lapina 1991, 
Luksiene & Sandström 1994). While few studies have 
investigated the impacts of noise pollution on wildlife 
reproductive morphology, long-term (60 days) exposure 
to noise pollution has been shown to cause a decrease 
in the diameter of seminiferous tubules and the thickness 
of the germinal epithelium in adult male rats (Farzadinia 
et al. 2016).

In addition to altering sexual morphology, pollution 
can disrupt cueing systems for sex determination and/
or sexual differentiation, resulting in biased sex ratios. 
This is best illustrated in species that show temperature-
dependent sex determination, including various fish, 
amphibian, and reptile species (Crews  et  al. 1994, 
Baroiller & D’Cotta 2001, Eggert 2004). Shifts in 
environmental temperatures are occurring globally 
through climate change (Hansen  et  al. 2006), as well 
as more locally through processes such as warm water 
discharge into rivers and estuaries from power plants 
(Raptis  et al. 2016). An example of the former is seen 
in sea turtles, where higher nest temperatures are 
shown to skew sex ratios towards females (Fuentes et al. 
2009), and this imbalance is predicted to become more 
extreme as temperatures increase due to global warming. 
Additionally, changes in environmental temperature 
can exacerbate the reproductive effects of certain 
chemical pollutants that affect sexual differentiation. 
For example, the antifungal chemical clotrimazole has 
been shown to skew sex ratios in zebrafish (Danio rerio) 
towards males by inhibiting production of aromatase, an 
enzyme that converts testosterone to oestrogen, and this 
effect is enhanced at higher temperatures (Brown et al. 
2015). These imbalances in sex ratios potentially 
reduce reproductive success by lowering encounter 
rates between males and females. In facultative sexual 
species, altered sex ratios may change the rate of sexual 
reproduction vs asexual reproduction. This has been 
seen in various Daphnia species, where the production 
of males can be affected by a variety of pollutants 
(dieldrin in Daphnia galeata: Dodson et  al. 1999a; 
atrazine in Daphnia pulicaria: Dodson et  al. 1999b; 
dicofol and vinclozolin in Daphnia magna: Haeba et al. 
2008), altering the rate of sexual reproduction.

Exposure to environmental pollution can also alter 
reproductive timing in wildlife. For example, ambient 
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light levels, which are used as a cue for the timing 
of reproductive processes in many animals, can be 
disrupted by light pollution. A powerful example of this 
is seen in common blackbirds (Turdus merula), where, 
after 1 year of exposure to artificial light at night, seasonal 
development of the birds’ gonads occurred up to 1 month 
earlier and, after the second year of exposure, gonads did 
not show seasonal development at all (Dominoni et al. 
2013a,b). Further, light pollution has been shown to delay 
births in tammar wallabies (Macropus eugenii), which 
is potentially mediated by suppression of melatonin 
(Robert et al. 2015). Ambient temperature is also used as 
a cue for biological events in many species, and similar 
to effects of artificial light pollution on reproductive 
timing, increased temperatures due to the effect of urban 
heat islands – or, more broadly, global warming – can 
result in temporal shifts in reproduction (Visser  et  al. 
2009). Altered reproductive timing can have serious 
repercussions for offspring production or survival, as the 
shift may de-synchronise offspring production with peak 
resource availability. For example, it is predicted that, 
due to increasing temperatures, forest bird offspring will 
become increasingly mismatched with peak caterpillar 
availability (Burgess et al. 2018).

Consequences for gametes

The previously described effects of pollutants 
on hormones and sexual development can have 
consequences on gamete function and, hence, fertility. 
For example, when male fish are feminised via exposure 
to oestrogenic pollutants, this can result in reduced 
sperm quality (Jobling  et  al. 2002a,b). Further, female 
brown trout (Salmo trutta) exposed to bisphenol A (BPA) 
prior to, and during, spawning exhibited lower levels 
and later onset of ovulation, while exposed males 
showed reductions in sperm density, motility rate, and 
sperm swimming velocity (Lahnsteiner  et  al. 2005). 
These effects were likely due to the oestrogenic activity 
of BPA. Numerous studies have also shown that human 
males exposed to particulate air pollution produce 
sperm that exhibit impaired motility (De Rosa et  al. 
2003, Hammoud et al. 2010, Huang et al. 2019, see also 
Deng  et  al. 2016 for recent meta-analysis and review 
by Jurewicz  et  al. 2018) and impaired DNA structure 
and integrity (Sram  et  al. 1996, Selevan  et  al. 2000, 
Rubes et al. 2005), although the mechanisms for these 
effects are poorly understood. Similarly, in wildlife such 
as birds, radiation pollution has been shown to have a 
range of negative effects on sperm that include increased 
mutation rates, as well as reduced sperm production, 
quality, and motility (Møller et al. 2005, 2008, 2014).

In externally fertilising species, pollutants can induce 
detrimental effects through direct contact with sperm and/
or eggs. For instance, in capelin fish (Mallotus villosus), 
exposure to chemical-dispersing agents can reduce the 
fertilising capability of sperm (Beirão et al. 2018), while 

harmful impacts of contaminants on sperm swimming 
parameters have been reported in both fish (e.g. copper 
ions: Kowalska-Góralska  et  al. 2019; heavy metals: 
Abascal et al. 2007; EDCs: reviewed by Carnevali et al. 
2018) and invertebrates (e.g. xenobiotics: Gallo 2018; 
nanoparticles: Hollows  et  al. 2007, Han  et  al. 2019). 
Pollutants can also have damaging effects through direct 
contact with eggs. For example, Han et al. (2019) found 
that in broadcast-spawning bivalves (Tegillarca granosa), 
the nanoscale pollutant titanium dioxide can attach to 
the oocyte surface and damage the plasma membrane, 
which is thought to contribute to reduced gamete fusion 
success. Similarly, in fish, exposure of spawned eggs 
to certain polluting metal compounds can adversely 
impact fertilisation capacity and general viability 
(Jezierska et al. 2009).

A particularly concerning aspect of certain 
environmental pollutants is their ability to induce long-
term impacts that may persist across many generations 
following the initial exposure event. An increasing body 
of evidence has reported associations between adult 
exposure to environmental pollutants and reductions 
in offspring health and fitness, almost certainly via 
epigenetic mechanisms (Soubry  et  al. 2014). Much of 
this evidence comes from studies reporting changes 
in sperm chromatin structure, changes in sperm small 
ncRNA (sncRNA) content, and altered DNA methylation 
patterns in sperm (Evans  et  al. 2019). Such epigenetic 
changes in sperm, for example, can occur following 
exposure to various pollutants, including cigarette smoke 
(Jenkins et al. 2017), ethanol (Rompala et al. 2018) and 
the fungicide vinclozolin (Ben Maamar  et  al. 2018). 
Fortunately, these effects appear to be at least partially 
reversibly via exercise and environmental enrichment, 
depending on the toxicant, effect and specific process 
affected (Short et al. 2017). Studies have also implicated 
paternal chronic exposure to EDCs with changes in sperm 
sncRNAs. For example, in zebrafish, paternal exposure 
to the synthetic oestrogen 17α-ethinyloestradiol (EE2) 
results in a range of disorders in offspring (e.g. skeletal 
and cartilage deformations, poor locomotion, etc.), 
mostly likely due to an up-regulation of microRNA 
transcripts in the testes and sperm (Valcarce et al. 2017). 
Such studies showing transgenerational effects suggest 
that environmental pollutants can impact population 
health long after the initial exposure and even after 
contaminants have been removed, which may cause 
us to underestimate the full scope of the impacts of  
such exposures.

Effects of pollution on sexual communication, 
sexual selection, and parental care

Pollutants can impact the ability of animals to 
locate potential mates by disrupting the production, 
transmission, and detection of signals important in sexual 
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communication (Bird & Parker 2014, Vargas-Salinas 
et al. 2014, Shannon et al. 2016, Walters et al. 2019). 
An example of this is pollution disrupting the production 
of pheromones – some of which are steroid hormones, 
such as glucuronides (Scott & Vermeirssen 1994). For 
instance, in the cotton bollworm moth (Helicoverpa 
armigera), exposure to the herbicide diclofop-methyl 
has been found to inhibit sex pheromone production 
by reducing fatty acid synthesis (Eliyahu  et  al. 2003). 
Similarly, light pollution can disrupt pheromone 
production, with low-intensity artificial light at night 
reducing sex pheromone production in female cabbage 
moths (Mamestra brassicae: van Geffen et al. 2015). As 
these pheromones are used to indicate reproductive 
receptivity, inhibited pheromone production will likely 
reduce mate acquisition and, thus, mating success. 
Indeed, this has been reported in female red-spotted 
newts (Notophthalmus viridescens), where exposure to 
the insecticide endosulfan resulted in the suppression 
of pheromone production and subsequently reduced 
mating success (Park et al. 2001).

As well as disrupting pheromone production, 
environmental pollution can interfere with acoustic 
or visual signals used for sexual communication. For 
example, exposure to polychlorinated biphenyls (PCBs) 
can reduce androgen-dependent growth in cartilage 
and muscle of the larynx in male African clawed 
frogs (Xenopus laevis), preventing them from making 
advertisement calls to females (Qin et al. 2007). Similarly, 
in species as taxonomically diverse as fish, amphibians, 
birds, and mammals, anthropogenic noise pollution can 
mask acoustic signals used by individuals to attract their 
mates (reviewed in Shannon et al. 2016) or prevent the 
perception of these mating signals by damaging auditory 
organs (Jepson et al. 2003, André et al. 2011). Likewise, 
artificial light pollution is thought to be the primary 
driver for population declines in glow-worms (Lampyris 
noctiluca), as light pollution can drastically reduce the 
ability of males to detect the bioluminescent light signals 
of reproductively active females (Bird & Parker 2014).

Environmental pollution can also compromise the 
ability of animals to select a suitable mate (reviewed in 
Candolin & Wong 2019). For example, in a freshwater 
fish, the guppy (Poecilia reticulata), exposure to an 
agricultural steroid pollutant (17β-trenbolone) disrupted 
patterns of female preference for male colour traits that 
are important in signalling male genetic quality to choosy 
females (Tomkins et  al. 2018). Exposure to pollution 
can also affect the relationship between the expression 
of sexual traits and the fitness benefits associated with 
those traits. In European starlings (Sturnus vulgaris), 
for instance, males exposed to a mixture of synthetic 
oestrogenic endocrine disruptors showed a reduction 
in immune function, but developed songs that were 
longer and more complex and, as a result, were actually 
preferred by females (Markman et al. 2008). At its most 
extreme, the disruption of mate selection can even lead 

to the breakdown of premating reproductive isolation 
and the loss of biodiversity. For example, in two 
co-occurring species of swordtail fishes (Xiphophorus 
birchmanni and Xiphophorus malinche), exposure to 
sewage effluent and agricultural runoff resulted in the 
loss of female preference for the odour cues of male 
conspecifics, leading to females mating indiscriminately 
with males of both species (Fisher et al. 2006).

After mating, environmental pollution can impact 
the quality of parental care provided to young, with 
consequences for the health and survival of offspring 
(Wong et  al. 2012, Suárez‐Rodríguez & Garcia 2017, 
Cianchetti-Benedetti et  al. 2018). For example, in 
seabird nesting colonies (Calonectris diomedea), short-
term nocturnal exposure to light and noise pollution has 
been associated with decreased weight gain of chicks, 
which is thought to result from a reduction in parental 
nest attendance and feeding (Cianchetti-Benedetti et al. 
2018). Further, human-induced eutrophication and 
associated algal blooms have been shown to directly 
impact the quality of nest construction in a fish, the 
three-spined stickleback (Gasterosteus aculeatus), with 
nest quality being an important predictor of offspring 
survival (Wong et  al. 2012). A complex example of 
pollution-induced effects on parental care is seen in 
urban-dwelling house finches (Carpodacus mexicanus) 
that have started to incorporate cigarette butts into the 
lining of their nests (Suárez‐Rodríguez & Garcia 2017). 
In so doing, the chemicals present in the cigarettes 
reduced the amount of ectoparasites in the nest, although 
the benefits of this behaviour may be counterbalanced 
in the long-term by genotoxic damage to offspring 
(Suárez‐Rodríguez & Garcia 2017).

Ecological and evolutionary implications

We have described how environmental pollution can 
impact reproductive processes in a broad variety of ways, 
including via direct effects on sexual development and 
effects on sexual selection processes. These effects on 
different aspects of reproduction can dramatically alter 
the fitness of individuals by reducing the quality and/or 
quantity of offspring produced. By disrupting the overall 
reproductive success of a population, environmental 
pollution has many implications for the viability and 
evolutionary trajectory of affected populations.

Many of the reproductive alterations outlined in this 
review decrease fitness as a result of reduced mating or 
fertilisation success. In some cases, pollution-exposed 
individuals have reduced fertility due to impaired sexual 
development and/or gamete function. In other cases, 
individuals are unable to locate a mate due to the 
disruption of the production, transmission, or detection 
or sexual communication signals. As population stability 
depends on new generations of offspring, lowered 
reproductive success resulting from pollution exposure 
may lead to population declines or even extinctions.  
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For example, Kidd  et  al. (2007) conducted a 7-year 
whole-lake experiment with chronic exposure of fathead 
minnows (Pimephales promelas) to low concentrations 
of 17α-ethinyloestradiol (EE2). The resulting feminisation 
of males and altered oogenesis in females led to a near 
extinction of this species in the lake, demonstrating 
the extreme impacts that reproductive impairment due 
to pollution can have at the population level (see also 
Desforges et al. 2018).

Effects of pollution on reproductive traits, however, 
do not always lower organismal fitness. Some alterations 
in reproductive processes may be minor enough to have 
negligible effects on fitness. For example, De Jong et al. 
(2015) reported that exposure to light pollution affected 
the lay date of great tits, although this did not appear 
to have any measurable fitness consequences in the 
offspring. Additionally, where pollutants cause the sex 
ratio of a population to be skewed towards females, this 
may not significantly affect the growth of a population 
in cases where the males are still able to successfully 
fertilise most of the females (Candolin 2019). In other 
cases, certain pollutants have even been shown to have 
potentially positive effects on fitness. For example, male 
fish exposed to growth-promoting steroids have been 
found to perform more copulations than unexposed 
males (Bertram  et  al. 2015, 2018). Similarly, Daphnia 
magna have been found to have increased fecundity 
when exposed to fluoxetine, an ingredient of many 
antidepressant medications (Campos  et  al. 2012). 
Together, the previously mentioned examples highlight 
how pollution can have negative, negligible, and even 
potentially positive effects on the average reproductive 
success of individuals within a population, with clear 
implications for population persistence over time.

In some cases, populations may be able to adjust or 
adapt to reproductive challenges posed by pollution, 
either through plastic or evolved responses. For 
example, city-dwelling song birds sing at a higher pitch 
compared to rural conspecifics, so that they can be 
heard above the low frequency din of urban noise (e.g. 
great tits, Parus major: Slabbekoorn & Peet 2003). Some 
species are also able to adjust the timing of their calls to 
avoid the noisiest times of the day, as in frogs (Lithobates 
clamitans and Lithobates catesbeianus) subjected to 
road traffic noise (Vargas-Salinas et al. 2014) and birds 
living adjacent to airports (Gil et  al. 2015). There are 
also numerous cases where females demonstrate a 
preference for unexposed males compared to those 
exposed to a pollutant (Gore et al. 2018), although this 
mechanism is less useful in environments where all 
males are contaminated. There is evidence to suggest 
that such changes can impact ecosystem dynamics 
if some species are able to adapt to pollutants better 
than others. For example, in New Mexico, bird species 
that adjust vocalisations in response to noise pollution 
increased in number, while species unable to do this 
decreased, altering bird communities and species 

interactions (Francis et al. 2009). It is also worth noting 
that the ability of species to adapt to pollutants may be 
constrained when the pollutants relax sexual selection, 
as there is evidence that sexual selection may promote 
evolutionary mechanisms that allow organisms to cope 
with pollution (Jacomb et al. 2016).

When species are unable to adapt to reproductive 
challenges caused by pollution, the resulting population 
declines can have cascading effects on the wider 
ecosystem due to altered species interactions. For 
instance, following the decrease in fathead minnows 
due to EE2 exposure, Kidd et  al. (2014) observed an 
increase in abundance of its prey species, such as 
zooplankton, chaoborus, and emerging insects, as well 
as a decrease in biomass of lake trout, a fathead minnow 
predator. These species were unaffected by direct 
oestrogen exposure, highlighting the need for research 
examining broader ecological effects, such as species 
interactions, when assessing environmental impacts of 
pollution (see also Windsor et al. 2018). Such cascading 
effects have also been seen in ecosystems where 
gastropod populations have declined due to exposure 
to anti-fouling paint, resulting in disruptions to intertidal 
community structure and function (Coray & Bard 2007, 
Roach & Wilson 2009).

Future directions

When investigating effects of environmental change, 
there is a tendency for studies to focus on the direct, 
short-term effects of a single pollutant on a single species, 
most often vertebrates (Lewis & Ford 2012). However, 
this only provides a limited understanding of pollutant 
impacts and may underestimate broader hazards posed 
to wildlife and the ecological communities they inhabit. 
For a more holistic understanding, future studies should 
consider both biotic and abiotic interactions (discussed 
in Saaristo et al. 2018). Indeed, the previously mentioned 
research by Kidd et al. (2014) demonstrates the influence 
of species interactions on the wider effect of a pollutant, 
which can easily be overlooked when studying direct 
effects alone. Furthermore, pollutants can interact 
with other stressors to cause synergistic effects, where 
the interaction of multiple stressors causes an effect 
that is significantly greater than would be expected if 
the independent effects of each stressor were simply 
summed together. For example, in zebrafish, exposure 
to progestin and high temperatures simultaneously 
had much more severe negative impacts on female 
fecundity than either effect in isolation (Cardoso et al. 
2017). Additionally, future research should investigate 
the effects of pollutants over multiple generations. Such 
research will help to uncover whether species are able 
to adapt or habituate to environmental changes and will 
help us understand how pollutants may otherwise impact 
evolutionary processes (Saaristo  et  al. 2018, Candolin 
2019). More broadly, if we are to more fully understand 
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the impacts of pollutants on reproduction, more focus 
needs to be given to integrating research across multiple 
spatial scales at different levels of ecological complexity, 
from controlled laboratory assays to field-based 
investigations under more natural settings (Klaminder 
et al. 2016, Windsor et al. 2018; e.g. mesocosm-based 
studies on light pollution: Bennie et  al. 2015; field-
based studies on noise pollution: Simpson et al. 2016; 
whole-lake experiments on chemical pollution: Kidd 
et al. 2007, 2014).

Our increasing awareness of the impacts of pollutants 
on reproduction should be harnessed to implement 
mitigation strategies to manage many of the deleterious 
effects outlined in our review. Such actions may not 
only be beneficial for the sustainability of wildlife 
populations, but also for human health, with mounting 
evidence that these pollutants can affect humans in a 
similar manner to other animals (Damgaard et al. 2002, 
Deng et al. 2016). Indeed, there has already been some 
progress towards improved management of pollutants. 
For example, additional treatment steps, such as 
ozonation and activated carbon treatment, can play a 
key role in the removal of EDCs and other contaminants 
from wastewater (Nowotny et al. 2007, Hollender et al. 
2009). In the context of light pollution, limiting the use 
of artificial light, shielding lights to reduce ‘trespass’ of 
light into neighbouring areas, and altering the intensity 
or spectrum of lighting can decrease potential impacts 
of anthropogenic light at night (Gaston et al. 2012). It 
has also been suggested that sound barriers and noise 
curfews, which are already widely used to reduce 
impacts on human inhabitants, could be effectively 
employed to alleviate effects of noise pollution on 
wildlife (Slabbekoorn & Ripmeester 2008). Such 
initiatives are just some of the many practical outcomes 
that can be achieved by harnessing research to minimise 
the detrimental effects of pollutants.

In this review, we highlight that environmental 
pollution, in its various forms, can interfere with 
many different aspects of reproduction, including 
physiology, gamete function, and organismal behaviour. 
These disruptions often reduce reproductive success 
of organisms by, for example, interfering with their 
ability to secure a mate or decreasing their fertility. 
In addition, pollution can reduce offspring viability 
through epigenetic effects or by altering reproductive 
timing (thereby causing a mismatch between ecological 
resources and offspring), by disrupting process of 
sexual selection resulting in mating with less suitable 
partners, and by disrupting parental care. While it 
is clear that environmental pollution can affect the 
reproduction of wildlife, the full extent to which these 
changes are affecting population growth, ecosystem 
structure, and evolutionary trajectories is less clear. To 
better understand these higher-level consequences of 
pollution, it is important that we collect long-term data 
and employ studies that incorporate increasing levels of 

ecological complexity through the use of mesocosm- 
and field-based approaches, as well as continue to 
implement strategies to mitigate the impacts of pollution 
on wildlife and humans alike.
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